
V -variable Fractals: Theory and Implementation

Bram Kuijvenhoven

June 13, 2007

Abstract

This report gives an overview of V -variable fractal theory, as presented
in [2003a], and briefly discusses computer implementations suitable for
rendering such fractals in three dimensionsal space.

1 Introduction

Random and deterministic fractals generated by Iterated Function Systems are
used to model phenomena in a wide range of applications. In many applications,
a finer control on local variability is required than what can be accomplished by
using deterministic fractals, which are locally too similar at different points, and
random fractals, which by contrast exhibit too few correlation between different
points [BHS]. Moreover, computing random fractals is a slow and difficult task.

Therefore, the class of V -variable fractals is introduced, which accomodate
mainly for two things:

• Fine control over local variability.

• A fast algorithm for computing and sampling standard random fractals.

Barnsley, Hutchinson and Stenflo published an expository article about V -
variable fractals in [BHS], while [2003a] and [2003b] provide the more technical
backgrounds, including V -variable code trees and dimension results.

One of the applications given in [2003a] is the area of computer graphics.
Examples are given of fractals in R2, discretized using bitmaps (two-dimensional
arrays of pixels). Section 2 through 5 give an overview of the theory on V -
variable fractals as presented in [2003a]. Some additional remarks are placed in
footnotes. Finally, in Section 6 is presented my own work regarding computer
implementations – in particular those suitable for rendering three-dimensional
fractals.

2 IFSs and fractals

A traditional way to generate deterministic and random fractals is by using
Iterated Function Systems (IFSs). These IFSs express the self-similarity of the
fractals and can be used to actually construct (samples of) the fractals.

1

2.1 IFSs

First, we will introduce some notation and the basics of IFSs. Throughout, M ,
N and V will denote positive integers, m will be a number in the set {1, . . . ,M},
and similarly n ∈ {1, . . . , N}, and v ∈ {1, . . . , V }.

Consider a compact, metric space (X, dX). An Iterated Function System
(IFS) on X is denoted by

F = (X; f1, . . . , fM ; p1, . . . , pM), (1)

with the fm : X → X being M component maps and the pm being M non-
negative weights adding up exactly to 1. Sometimes the weights are omitted
and then the version with weights is referred to as an IFS with weights or a
weighted IFS.

The maps fm will usually be contractive maps. Examples of the space X
are R2 and R3 equipped with the Euclidean metric. In this case, the maps fm

will usually be affine transformations, which can be described by a single matrix
and vector.

The IFS F does not operate on X itself, but on a derived space. Of particular
interest are the space H = H(X) of all non-empty, compact subsets of X and the
space P(X) of all probability measures on X. For the associated metrics dH and
dP we take the Hausdorff metric and the Monge-Kantorovitch metric that are
induced by dX. (See [2003a] for a precise definition of the these metrics.) This
yields two compact metric spaces (H(X), dH) and (P(X), dP). The Borel sets of
X are denoted by B(X).

A map f : X → X is extended to f : H(X) → H(X) by setting f(K) =
{f(x) : x ∈ K} for all K ∈ H(X). It is extended to f : P(X) → P(X) by taking
the push-forward map defined by f(µ) = µ ◦ f−1 for all µ ∈ P(X).

The IFS F itself can now operate on H(X) and P(X) as follows:

F (K) =
M⋃

m=1

fm(K) ∀K ∈ H(X), (2)

F (µ) =
M∑

m=1

pmfm(µ) ∀µ ∈ P(X). (3)

If the components maps fm are contractions — i.e. there exists a constant
l ∈ [0, 1) such that d(fm(x), fm(y)) ≤ l · d(x, y) for all x, y ∈ X — then so is
F , on both spaces H(X) and P(X) and using the same constant. As a result,
there exists a unique attractor set A ∈ H(X) satisfying A = F (A) and a unique
attractor measure µ ∈ P(X) satisfying µ = F (µ).

Hence there are two IFS attractors: the set attractor A, called a fractal set,
and the measure attractor µ, called a fractal measure. Both attractors are called
fractals. The component maps fm define the self-similarity of the fractals; they
define how the fractals are composed of (transformed) copies of itself.

From now on we will assume that the component maps of the IFSs that we
will discuss are all strict contractions with the same factor l ∈ [0, 1).

2

2.2 Fractal computation

There are basically two algorithms for the computation of IFS-generated frac-
tals: the deterministic process, or backward process, and the random iteration
process, or forward process, which is also called the chaotic process or chaos
game.

The backward process follows a standard way to obtain the fixed point of
a contractive map: start with any set A0 ∈ H and iterate Ak+1 = F (Ak) for
k = 1, 2, . . . ; the process will converge (in the Hausdorff metric) to the attractor
set A. Similarly, one can start with a µ ∈ P and iterate µk+1 = F (µk) for
k = 1, 2, . . . and the process will converge (in the Monge-Kantorovitch metric)
to the attractor measure µ.

The forward process does not start with a set, but with a point, x1 ∈ X.
The iteration step is given by xk+1 = f̂k(xk), k = 2, 3, . . . , where in each step f̂k

is chosen randomly from (f1, . . . , fM) using the respective weights (p1, . . . , pM).
The result is a random orbit {xk}k≥1 of points which do accumulate unevenly
in X. In particular, it has been proved that for all starting points x1 almost
surely the weighted sums of point measures 1

k (δx1 + · · ·+ δxk
) converges in the

weak sense to the attractor measure µ.

2.3 Code spaces

A very useful concept associated with the IFS F is that of its code space,
Σ = {1, . . . ,M}∞. The members of this space are infinite sequences over the
alphabet {1, . . . ,M}, indexed by the positive numbers, N.

The space Σ is made a compact metric space by equipping it with the metric
dΣ, which is defined for σ 6= τ by

dΣ(σ, τ) =
1

Mk
(4)

where k is the smallest index such that σk 6= τk.
There exists a continuous onto mapping F : Σ → A, which is defined for all

σ1σ2 · · · ∈ Σ by

F (σ1σ2 . . .) = lim
k→∞

fσ1 ◦ . . . ◦ fσk
(x), (5)

a limit that is independent of x ∈ X and whose convergence is uniform in x.
The sequence σ1σ2 · · · ∈ Σ, the code space, is called an address of the point
F (σ1σ2 . . .) ∈ A, the attractor set of F . Note that the map F : Σ → A is onto,
but not one-to-one in general.

The map F : Σ → A also characterizes µ, the measure attractor of F , but
to this end we must first define a fundamental IFS on Σ.

For m ∈ {1, . . . ,M}, the shift operator sm : Σ → Σ is defined by

sm(σ1σ2 . . .) = mσ1σ2 . . . (6)

for all σ1σ2 · · · ∈ Σ. The shift operators are contractive with factor 1
M , hence

the IFS S := {Σ; s1, . . . , sM ; p1, . . . , pm} has a unique set attractor, which is Σ

3

itself, and a unique measure attractor, which equals a measure that is denoted
by π ∈ P(Σ). On cylinder sets, subsets of Σ of the form

[σ1 . . . σk] = [σ1 . . . σk]Σ := {τ1τ2 · · · ∈ Σ : σ1 . . . σk = τ1 . . . τk}, (7)

with k ≥ 1 and σ1 . . . σk ∈ {1, . . . ,M}k, this measure π is defined by

π([σ1 . . . σk]) = pσ1 · · · pσk
, (8)

and this has a unique extension to P(Σ).
A theorem now relates the measure attractor µ of the IFS F on X to the

measure attractor π of the fundamental IFS S on Σ by asserting that

µ = F (π) = π ◦ F−1, (9)

where F : Σ → A is the map defined in (5).

3 V -variable fractals

The construction of V -variable fractals corresponds to the forward process of a
superfractal, which we will be discussed in greater detail below. A V -variable
fractal is constructed using the set

F :=
{
X;F 1, . . . , FN ;P1, . . . , PN

}
(10)

whose N components Fn are IFSs in their own right, accompanied by non-
negative weights Pn that add up to 1. For each IFS we write

Fn := {X; fn
1 , . . . , fn

M ; pn
1 , . . . , pn

M} . (11)

The maps fn
m are all maps operating on X with contraction factor smaller than

or equal to l ∈ [0, 1), and the non-negative weights pn
m sum up to 1 over the

index m. Finally, V is a positive integer which determines the ‘variability’ of
the fractal that will be constructed.

Consider the space of V -tuples of non-empty compact subsets of X, denoted
by HV = H(X)V , as well as the space of V -tuples of measures on X, denoted
by PV = P(X)V . These V -tuple spaces are equipped with metrics dHV and dPV ,
which are induced from dH and dP by taking the component-wise maximum.
That is, for a metric space (X, dX) one defines the metric space (XV , dXV) by

dXV (x, y) = max
v=1...V

dX(xv, yv) (12)

for all x = (x1, . . . , xV), y = (y1, . . . , yV) ∈ XV , and the same contruction is used
to obtain the metric spaces (HV , dHV) and (PV , dPV) from (H, dH) and (P, dP).
These metrics allow one to speak of convergence in these V -tuple spaces, as well
as of contraction maps on these spaces.

An iteration step in the construction of a V -variable fractal takes V ‘input
buffers’ and produces V ‘output buffers’. The iteration step also involves a

4

number of random choices: for each v-th output buffer an IFS Fnv is chosen as
well as M input buffers for this IFS, indexed by (vv,1, . . . , vv,M). These choices
together are captured in a single index a ∈ A by writing

a := (a1, . . . , aV) ∈ A :=
{
{1, . . . , N} × {1, . . . , V }M

}V
, (13)

av := (nv; vv,1, . . . , vv,M) ∈ {1, . . . , N} × {1, . . . , V }M . (14)

In general, each choice a ∈ A is chosen with probability Pa. These probabilities
are determined for example by requiring that the choices of IFSs are independent
of each other, with weights (P1, . . . , PN), and that the choices of input buffers
are also independent but follow a uniform distribution. In that case they are
given by

Pa =
Pn1 · · ·PnV

V MV
. (15)

For each choice a ∈ A, the iterations steps on H(X)V and P(X)V are given
by maps fa : H(X)V → H(X)V and fa : P(X)V → P(X)V , defined by

fa(K) =

(
M⋃

m=1

fnv
m (Kvv,m

)

)V

v=1

, (16)

fa(µ) =

(
M∑

m=1

pnv
m fnv

m (µvv,m
)

)V

v=1

(17)

for all K = (K1, . . . ,KV) ∈ H(X)V and µ = (µ1, . . . , µV) ∈ P(X)V . Essentially,
the construction of V -variable fractals corresponds to the chaotic or forward
process of the superIFSs

FV :=
{
H(X)V ; fa,Pa, a ∈ A

}
, (18)

F̃V :=
{
P(X)V ; fa,Pa, a ∈ A

}
. (19)

These IFSs also have each a unique attractor, called the superfractal set,
respectively superfractal measure. This follows from the fact that the fa are
contractions with the factor l ∈ [0, 1) in (H(X)V , dH(X)V) and (P(X)V , dP(X)V).
(For a proof of this, see Theorems 15 and 20 of [2003a].)

4 Random fractals

Associated to the weighted collection F of IFSs in (10) is also a canonical random
fractal. The construction of this random fractal can be understood in the context
of associated code trees and a probability distribution on the space of such code
trees, which is induced naturally by the weights (P1, . . . , PN).

5

4.1 Code trees

Let T denote the M -fold tree: the set of finite sequences of elements from the set
{1, . . . ,M} including the empty sequence, which is denoted by ∅. The elements
i = i1 . . . ik ∈ T of this tree are called its nodes; the number |i| = k is called the
level of the node. The M -fold level-k tree Tk is a subset of T containing only
those nodes up to and including level k.

A labelled tree is a function with domain T . A code tree is a labelled tree
with range {1, . . . , N}. The space of all infinite code trees is denoted by

Ω := {τ : τ : T → {1, . . . , N}} . (20)

Obviously, a level-k code tree τ has domain Tk, and we write |τ | = k in such
cases.

A level-k code tree τ is an initial segment of another code tree σ of at least
level k (including infinity) if they agree on their common domain, Tk. This
relation is denoted by τ ≺ σ. The cylinder set of a level k code tree τ is the set
set of all code trees extending it:

[τ] = [τ]Ω := {σ ∈ Ω : τ ≺ σ}. (21)

That is, a cylinder set is the set of infinite code trees whose first k levels corre-
spond to the level-k code tree τ .

A metric dΩ on Ω is defined by taking for τ 6= σ in Ω

dΩ(τ, σ) :=
1

Mk
(22)

where k is the smallest level k for which there exist a level-k node i ∈ T such
that σ(i) 6= τ(i). This metric makes (Ω, dΩ) a compact metric space. The
cylinder sets form exactly the open as well as the closed balls in this space.

The probabilities (P1, . . . , PN) induce a natural probability distribution ρ on
Ω. For cylinder sets [τ] where τ is a level-k code tree (k ≥ 0), it is defined by1

ρ([τ]) :=
∏
i∈Tk

Pτ(i) (23)

and ρ(Ω) = 1. The cylinder sets generate the Borel σ-algebra of (Ω, dΩ), denoted
by B(Ω), hence the extension of ρ to a probability distribution on Ω can be done
in the usual way.

4.2 The random fractal

The labels on the code trees correspond to the choices of IFSs in the random
fractal that they describe, and the probability distribution ρ on the space Ω
consisting of such code trees forms the underlying probability distribution. The

1Equation (3.3) of [2003a] states that product is to be taken over nodes i with 1 ≤ |i| ≤ |τ |,
but in fact the root node ∅ should also be included, which is denoted here by i ∈ Tk.

6

tree node hierarchy corresponds to the way the components maps of the chosen
IFSs are applied to an initial set K ∈ H(X) or initial measure µ ∈ P(X).

Define for all k ≥ 1 and σ ∈ Ω the compositions of maps

Fk(σ)(K) =
⋃

{i∈T :|i|=k}

f
σ(∅)
i1

◦ f
σ(i1)
i2

◦ . . . ◦ f
σ(i1i2...ik−1)
ik

(K), (24)

Fk(σ)(µ) =
∑

{i∈T :|i|=k}

 k∏
j=1

p
σ(i1...ij−1)
ij

 · fσ(∅)
i1

◦ f
σ(i1)
i2

◦ . . . ◦ f
σ(i1...ik−1)
ik

(µ).

(25)

From the strict contractivity of the maps fn
m it follows that indepent of K and

µ, the limits

F(σ) := lim
k→∞

Fk(σ)(K), F̃(σ) := lim
k→∞

F̃k(σ)(µ) (26)

exist, and the convergence is uniform in σ, K and µ. Moreover, the functions

F : Ω → H(X), F̃ : Ω → P(X) (27)

are continuous.
The sets of fractal sets, respectively fractal measures, associated with F are

given by

H := {F(σ) : σ ∈ Ω} = F(Ω), H̃ := {F̃(σ) : σ ∈ Ω} = F̃(Ω), (28)

and these sets are distributed according to the probability distributions

B := F(ρ) = ρ ◦ F−1 ∈ P(H), B̃ := F̃(ρ) = ρ ◦ F̃−1 ∈ P(H̃). (29)

5 V -variable fractals revisited

In the previous section we discussed a canonical random fractal associated with
the weighted system of IFSs F . We introduced a collection of code trees, Ω, gen-
erating a set of fractals, H, distributed according to a probabililty distribution,
B, that was derived from a distribution on the code trees, ρ. We will now con-
struct a collection of code trees suitable for describing V -variable fractals, and
show how these fractals can be used to approximate and sample the canonical
random fractal (H,B).

5.1 Code trees revisited

Before diving into the appropriate code trees, we introduce some extensions to
our concept of trees. Recall the M -fold tree T . To each node im ∈ T , with
i ∈ T and m ∈ {1, . . . ,M}, corresponds a limb, (i, im); the limb corresponding
to the root node ∅ is (∅, ∅), which we call the trunk. Limbs can also be labelled,
or even both the nodes and the limbs.

Another concept, regarding code trees, is that of subtrees: a subtree τ̃ of a
given code tree τ , rooted at node i ∈ T is defined by τ̃(j) = τ(ij) for all j ∈ T .

7

5.2 An IFS on ΩV

Now consider the space ΩV , the space of V -tuples of code trees. An element
of ΩV is called a grove2. For convenience, the trunks of its V component trees
will always be labelled from 1 to V . The metric dΩV on this space takes the
component-wise maximum of the metric dΩ defined in (22), cf. (12).

Not all groves in ΩV are of interest for our purposes. An IFS on ΩV will be
contructed whose attractor, ΩV , will provide the code trees of interest for V -
variable fractals. The component maps of this IFS are given by certain functions
ηa : ΩV → ΩV , with a ∈ A. A is the index set defined in (13), in our first
discussion of V -variable fractals. The weights are again the probabilities Pa,
indexed by a ∈ A.

The maps ηa correspond intuitively to V -tuples of level-1 function trees. The
v-th level-1 function of ηa consists of level-1 tree whose trunk is labelled with
v, whose root node is labelled nv, and whose M limbs are labelled vv,1 through
vv,M . The V -grove ηa(ω), obtained after one application of ηa to a V -grove
ω = (ω1, . . . , ωV) ∈ ΩV , consists of these V level-1 function trees with to each
m-th limb attached ωvv,m , the vv,m-th tree of the V -grove ω.

Algebraically, the maps ηa are defined conveniently using the n-th shift map-
ping ξn : ΩM → Ω, defined by

ξn(ω)(∅) := n, ξn(ω)(mi) := ωm(i), (30)

for all ω = (ω1, . . . , ωM) ∈ ΩM , m ∈ {1, . . . ,M} and i ∈ T . The interpretation
of the maps ηa in terms of level-1 function trees is now formalized by

ηa(ω1, . . . , ωV) =
(
ξn1(ωv1,1 , . . . , ωv1,M

), . . . , ξnV
(ωvV,1 , . . . , ωvV,M

)
)
, (31)

for all ω = (ω1, . . . , ωV) ∈ ΩV and a ∈ A.
The IFS on ΩV giving the right code space is

Φ :=
{
ΩV ; ηa,Pa, a ∈ A

}
. (32)

The maps ηa are contractive with constant 1
M , as Theorem 9 of [2003a] points

out. This is a natural consequence of the usage of the shift maps ξn in (31) and
the way the metric dΩ is defined. As a result, the IFS Φ has a unique attractor
set ΩV ∈ H(ΩV) and a unique attractor measure µV ∈ P(ΩV).

5.3 V -groves, V -trees and V -variability

The elements of ΩV are called V -groves and in turn their elements are called
V -trees. The V -groves are a special kind of groves, and their elements, V -trees,
are a special kind of code trees, hence the prefix ‘V -’ in front of their names.
There speciality is V -variability, as will be seen shortly.

2The New Oxford American Dictionary defines a grove as “a small wood, orchard, or group
of trees”; other dictionaries add that it is usually without underbrush.

8

First, we show that we can restrict our attention to the code trees appearing
on the first coordinate of the V -tuples in ΩV . Specifically, one defines ΩV,v to
be the set of V -trees appearing on the v-th coordinate of the V -groves in ΩV : 3

ΩV,v := {ωv ∈ Ω : ω = (ω1, . . . , ωV) ∈ ΩV }. (33)

Similarly, ρV
4 denotes the marginal probability measure on the first coordinate:

ρV (B) := µV (B,Ω, . . . ,Ω) (34)

for all Borel sets B ∈ B(Ω).
Theorem 10 of [2003a] states that independently of v, one has ΩV,1 = ΩV,v,

hence this equals the entire set of V -trees. If the probabilities {Pa, a ∈ A}
obey equation (15), then independently of v, starting at any initial grove, the
random distribution of trees ω ∈ Ω that occur on the v-th coordinate of groves
produced after n iterations of the random iteration process of the IFS Φ, almost
always converges weakly to the marginal distribution ρV as n →∞. (Of course,
the random distribution of the V -groves themselves converges almost always to
µV , as the IFS Φ is contractive. But this statement applies to the marginal
distribution of trees occuring on the first coordinate.)

[2003a] is not very clear about the origin of the requirement that the Pa

needs to obey equation (15), and it appears to be a little bit hidden in the
proof. The proof states that the IFS Φ is invariant under a map Ξ : ΩV → ΩV

that is a coordinate permutation, and that this means that the permuted IFS
{ΩV : ΞηaΞ−1,Pa, a ∈ A} equals Φ. The result would be that the attractors
are also invariant under Ξ, which means that ΞΩV = ΩV and ΞµV = µV . In
fact only the set of component maps does not change under transformation by
Ξ. The invariance of ΩV holds because it is independent of the weights Pa,
but the invariance of µV only follows only under a symmetry condition on these
weights, and equation (15) satisfies this symmetry.

A set L of vectors of labelled trees, as well as the vectors themselves, are
said to be V -variable, or to have the property of V -variability, when for each
component of a vector ω ∈ L and for each level k ≥ 1, the number of distinct
subtrees rooted at the nodes at level k is at most V .

Theorem 11 of [2003a] shows that ΩV equals exactly the set of V -variable
groves in ΩV , and that ΩV,1, the set of V -trees, equals exactly the V -variable
trees in Ω. This is proved by showing that the set of V -variable groves in ΩV

equals the set attractor of the IFS Φ, which is unique.
One of the main reasons to introduce V -variable fractals is because they

can be used to approximate canonical random fractals. Theorem 12 of [2003a]
founds the basis of this fact by giving two limits regarding V -trees and code
trees. It states that

dH(Ω)(ΩV,1,Ω) ≤ 1
V

, hence lim
V→∞

ΩV,1 = Ω, (35)

3[2003a] states that ΩV,v ⊂ ΩV , but in fact ΩV,v ⊂ Ω while ΩV ⊂ ΩV .
4Surely, a more canonical name for ρV would be µV,1, and we could just as easily define

µV,v for all v ∈ {1, . . . , V }.

9

and that when the probabilities Pa obey equation (15), then also

dP(Ω)(ρV , ρ) ≤ 1.4
(

M

V

) 1
4

, hence lim
V→∞

ρV = ρ, (36)

where the limits are in the respective metrics dH(Ω) and dP(Ω).5

5.4 The code space ΣV

The IFS Φ has as its associated code space ΣV := A∞. As Section 2.3 points
out, there exists a continuous onto mapping Φ : ΣV → ΩV , and an infinite
sequence a1a2 · · · ∈ ΣV is called an address of the point Φ(a1a2 . . .) ∈ ΩV . This
mapping is not one-to-one, however.

It is possible to compose level-1 functions trees to form level-k function
trees. A level-k function tree is level-k labelled tree with the nodes of the first
k− 1 levels labelled with numbers from {1, . . . , N} and the limbs from all levels
labelled with numbers from {1, . . . , V }. Let k ∈ N be a positive number. A grove
g of V level-k function trees has the trunks of each v-th component labelled with
v. We write |g| = k, and let Gk denote the set of such groves. Furthermore, let
G := ∪k≥1Gk.

The composition of two function tree groves g and h in G, denoted g ◦ h,
has height |g ◦ h| = |g| + |h|. To each level-k limb of g that is labelled with v,
the v-th function tree from h is attached. Similarly, for each g ∈ G, the map
ηg : ΩV → ΩV is defined by attaching to each level-|g| node of g that is labelled
v, the v-th component of ω ∈ ΩV . This extends the notion of maps ηa, a ∈ A,
and their associated function trees.

In particular, the operation ◦ on function trees is associative, and has the
property that

ηg◦h = ηg ◦ ηh. (37)

for all g, h ∈ G. In particular,

ηa1◦...◦ak = ηa1 ◦ . . . ◦ ηak . (38)

for all a1 . . . ak ∈ Ak, where we used a ∈ A to denote the corresponding level-1
function trees.6

5The constant 1.4 in equation (36) may be wrong, because from the proof in [2003a] itself,
it appears that the constant must be 7

21/4·3
≈ 1.96.

6[2003a] explains that they use ηa, a ∈ A, to denote both the mapping ηa : ΩV → ΩV

and the level-1 function tree to which it bijectively corresponds. Similarly they let ηg , g ∈ G,
denote both the mapping ηg : ΩV → ΩV and the function tree g itself. This seems to be a
little confusing, especially in interpreting equations like (37) and (38).

In fact, it seems to be more appropriate to let the indices a ∈ A denote both an element
in A and the level-1 function tree to which it bijectively corresponds. Similary, g ∈ G is a
function tree, which can be written as the composition of finitely many a ∈ A, and ηg is the
map on ΩV to which it corresponds.

10

5.5 Superfractal sets and measures

Recall the definition of the superIFSs FV and F̃V in equations (18) and (19). We
denote their set attractors — called superfractal sets — by HV ∈ H(H(X)V) and
H̃V ∈ H(P(X)V), and we denote their measure attractors — called superfractal
measures — by BV ∈ P(H(X)V) and B̃V ∈ P(P(X)V). The superfractal sets
are said to be distributed by their superfractal measures.

Just as we did with the V -tuples of code trees ΩV , we will restrict our atten-
tion to the first coordinate, that is, define for all v,∈ {1, . . . , V } the collections

HV,v := {Kv ∈ H(X) : (K1, . . . ,KV) ∈ HV }, (39)

H̃V,v := { µv ∈ P(X) : (µ1, . . . , µV) ∈ H̃V }, (40)

and define the marginal probability measures BV,1 ∈ P(H) and B̃V,1 ∈ P(P) by

BV,1(B) := BV (B, H(X), . . . , H(X)) ∀B ∈ B(H(X)), (41)

B̃V,1(B) := B̃V (B, P(X), . . . , P(X)) ∀B ∈ B(P(X)). (42)

In a similar way as can be shown for the sets of V -trees ΩV,v and the marginal
distribution ρV , one can prove that HV,v = HV,1 for all v and that H̃V,v = H̃V,1

for all v, and that when the probabilities Pa that are used in the superIFSs FV

and F̃V obey equation (15), then the marginal distributions BV,1 and B̃V,1 can
be approximated by looking at the empirical distribution at any v-th coordinate
of the random iteration process. This can also be proved by lifting the result
on code trees to the associated fractals, something that will be justified shortly.

As for any IFS, there exist a continuous onto mapping FV : ΣV → HV

that assigns to each address a1a2 · · · ∈ ΣV a V -tuple of non-empty compact
sets FV (a1a2 . . .) ∈ HV . Similarly, there exists a continuous onto mapping
F̃V : ΣV → H̃V that assigns to each address a1a2 · · · ∈ ΣV a V -tuple of measures
F̃V (a1a2 . . .) ∈ PV . But these mappings are not one-to-one in general, just as
the mapping Φ : ΣV → ΩV is not one-to-one in general.

The space ΩV , however, does provide a very useful code space for FV and
F̃V . The maps F : Ω → H(X) and F̃ : Ω → P(X) from equation (27) are
extended to the domain ΩV by setting for all (ω1, . . . , ωV) ∈ ΩV

F(ω1, . . . , ωV) := (F(ω1), . . . ,F(ωV)), (43)

F̃(ω1, . . . , ωV) := (F̃(ω1), . . . ,F(ωV)). (44)

Then Theorems 17 and 22 of [2003a] state that the following statements hold:

F(ηa(ω)) = fa(F(ω)), F̃(ηa(ω)) = fa(F̃(ω)) (45)

for all ω ∈ ΩV and a ∈ A, and

F(ΩV) = HV , F̃(ΩV) = H̃V , (46)

F(ΩV,1) = HV,1, F̃(ΩV,1) = H̃V,1, (47)

11

and when the weights Pa obey equation (15), then also

F(µV) = BV , F̃(µV) = B̃V , (48)

F(ρV) = BV,1, F̃(ρV) = B̃V,1. (49)

In particular, we call Φ(a1a2 . . .) a tree address of the fractal set F(a1a2 . . .),
as well as of the fractal measure F̃(a1a2 . . .).

The map from V -groves to V -variable fractals allows us to lift properties
of ΩV to these fractals. For example, the property of V -variability of V -trees
has an interesting interpretation in terms of the fractal sets HV,1: at any “level
of magnification”, any V -variable fractal sets is made of up to V “forms” or
“shapes”.

To be more precise, let ε > 0 represent any “scale”. Then any V -variable
fractal set in HV,1 is a finite union of continuous transformations of at most V
distinct non-empty compact subsets in H(X), and the diameter of these trans-
formed sets is at most ε. Similarly, any V -variable fractal measure in H̃V,1 is
a finite weighted superposition of continuous transformations of at most V dis-
tinct normalized measures in P(X), and the diameter of the support of these
measures is at most ε.

The second property that extends from ΩV to the V -variable fractals is
there ability to approximate canonical random code trees. That is, by using the
continuity of the maps F : Ω → H(X) and F̃ : Ω → P(X):

lim
V→∞

HV,1
(47)
= lim

V→∞
F(ΩV,1)

F cont.= F(lim
V→∞

ΩV,1)
(35)
= F(Ω)

(28)
= H, (50)

lim
V→∞

H̃V,1
(47)
= lim

V→∞
F̃(ΩV,1)

F̃ cont.= F̃(lim
V→∞

ΩV,1)
(35)
= F̃(Ω)

(28)
= H̃, (51)

and when the probabilities Pa obey equation (15), then by using the continuity
of the maps F : Ω → H(X) and F̃ : Ω → P(X): 7

lim
V→∞

BV,1
(49)
= lim

V→∞
F(ρV) F cont.= F(lim

V→∞
ρV)

(36)
= F(ρ)

(29)
= B, (52)

lim
V→∞

B̃V,1
(49)
= lim

V→∞
F̃(ρV) F̃ cont.= F̃(lim

V→∞
ρV)

(36)
= F̃(ρ)

(29)
= B̃. (53)

6 Computer implementation

For applications, one is interested in the actual computation of fractals, and for
the scope of this report, in the actual computation of V -variable fractals. To

7The proofs of Theorems 19 and 24 of [2003a] do not mention the correct continuous maps.
In the second part of the proof of Theorem 19 a map F : Ω → P(X) is mentioned, but
apparently either the map F : Ω → H(X), or the derived push-forward map F : P(Ω) →
P(H(X)) is meant.

In the second part of the proof of Theorem 24 a map F̃ : Ω → P(P) is mentioned, but
apparently either the map F̃ : Ω → P(X), or the derived push-forward map F̃ : P(Ω) →
P(P(X)) is meant.

12

this end, one must account not only for the random aspect of the process, but
also for some way to represent elements of H(X) and P(X) in a computer and
for a way to apply transformations fn

m to them.
We will restrict ourselves to X = Rd, equipped with the corresponding Eu-

clidean metric, and in particular to the cases d = 2 and d = 3, which are the
most important cases appearing in computer graphics. The easiest transforma-
tions to apply to these spaces are affine transformations, which are of the form
x 7→ Ax + b with A ∈ Rd×d and b,x ∈ Rd.

6.1 Representation

Two common ways to represent elements of H(Rd) on computers are:

• Bitmaps; based on a division into a d-dimensional grid of cells (or pixels).

• Vector graphics; based on descriptions for the boundaries of objects.

The bitmap representation is used mainly to represent images in two dimensions.
Most computer image formats, like PNG and JPEG are based on it. The vector
graphics representation is used for example in the PostScript and PDF standards
(though these also support inclusion of bitmap graphics).

Because the storage requirements for describing objects in R3 using bitmap
graphics grow very fast with respect to the desired precision, a vector-like repre-
sentation is often used for three dimensions. For example, computer programs
using the OpenGL or Direct3D standards — such as games — describe the the
shape of objects basically by their boundary, given as the composition of simple
geometric shapes such as triangles. The process of converting such vector based
descriptions to a 2-dimensional bitmap representation suitable for display on
a computer screen is called rendering. Personal computers are often equipped
with a graphics card which provides hardware support for rendering.

The surface of the represented objects is often furnished with 2-dimensional
bitmap called textures, but other methods to specify their appearance exist. In
particular, modern graphics cards support pixel shaders which are little pro-
grams that are executed for each pixel rendered to determine their color on the
output screen.

Elements from P(Rd) can be interpreted as greyscale images. It is practical
to represent them by bitmaps in which every pixel gets assigned a number in a
fixed range like 0 . . . 255 or 0 . . . 65535, a shade of grey.

6.2 Transformations

Applying a given transformation f to a bitmap is done most easily using its
inverse f−1, if it exists. To determine the value of an output pixel at coordinate
x ∈ Rd, simply look at the pixel in the input at coordinates f−1(x). In general
this procedure causes some loss of information (even if there is no scaling in f),
and averaging techniques can be applied to smooth jagged boundaries a bit.

13

An alternative way of dealing with (affine) transformations is commonly
employed in vector graphics systems: they allow the coordinate system to be
transformed. Apart from that, they allow one to “push” the current “graphics
state”, which includes the current coordinate transformation, to a stack and to
restore it later by a corresponding “pop” operation.

Suppose f is an affine transformation, then drawing a transformed version
f(K) of an object K is done by the following steps:

1. Push the current coordinate transformation onto the stack.

2. Transform the current coordinate transformation by f .

3. Draw the object K.

4. Pop the coordinate transformation from the stack.

6.3 Computing V -variable fractals

When generating V -variable fractals, a straightforward implementation uses a
set of V bitmaps. At each iteration step, the selected transformations are applied
to the selected “input buffers” to form the contents of the V “output buffers”.
All buffers are represented by bitmaps.

A vector representation could be chosen for the buffers, but one must take
care of the increasing complexity that occurs as the union of (transformed)
buffers is stored in the output buffer. One way to deal with that is by discarding
objects that become too small, or perhaps replace them by simpler objects.

These methods are quite efficient. This is because we are dealing with the
forward process, the forward process of a V -variable superfractal. The amount
of information that describes the generated approximation at the n-th iteration
is given only by the indices a1a2 . . . an ∈ An. Because it is a forward process,
we only need to use the last V buffers. Of course, this is tightly bounded to the
V -variable structure of the underlying fractal and code trees.

Another approach to rendering, especially suitable for R3, is to use coordi-
nate transformations. Recall that the V -trees are code trees that specify the
hierarchy of transformations that is to be applied. Each m-th limb of a node
i ∈ T labelled with the IFS index n = ω(i), ω ∈ ΩV,v corresponds to a trans-
formation fm

n . After having chosen k indices a1a2 . . . an ∈ Ak with probability
ρV ([ηa1◦...◦ak]) = Pa1 · · · Pak , tree level-k contruction tree a1 ◦ . . . ◦ ak can be
walked in depth-first order, meanwhile pushing and popping the transforma-
tions corresponding to each limb. Only when reaching a k-level node, whose
limb is labelled with v, the v-th initial set is drawn.

Though this approach does not reuse the intermediate buffer contents, its
runtime can be limited by pruning the construction tree whenever the current
coordinate transformation has a scaling smaller than a certain limit. At such
a point, something can be drawn to replace the subtree that is cut off. The
replacement shape could be a fixed shape, possibly estimated from previously
generated samples of the fractal, but this would break the V -variability at the
given scale. Still, this can be acceptable for applications.

14

There is another way of dealing with pruning: don’t prune on a small scale,
but keep the rescursion level k small. Apply this procedure iteratively, where the
replacement shapes are “simplified” versions of the v-th outputs of the previous
iteration. The indices v correspond to the labels of the corresponding limbs at
level k.

This method preserves V -variability nicely, but it may be difficult for partic-
ular implementations to obtain “simplified” versions of previous outputs. For
bitmap implementations, it is simple however. In fact, it corresponds to the
straightforward procedure described at the beginning of this subsection, applied
to the IFS

{XV ; fa1 ◦ . . . ◦ fak ,Pa1◦...◦ak , a1 . . . ak ∈ Ak}, (54)

where Pa1◦...◦ak := Pa1 · · · Pak , with corresponding code-space generating IFS

{ΩV ; ηa1◦...◦ak ,Pa1◦...◦ak , a1 . . . ak ∈ Ak}. (55)

6.4 An example

For the purpose of this report, I created a little program that renders V -variable
fractals using the OpenGL standard. It does not exploit any advanced pruning
or substitution techniques. See Figures 1 through 6 for some examples of images
it produced.

References

[BHS] M.F. Barnsley, J.E. Hutchinson and Ö. Stenflo, V-variable Fractals and
Superfractals

[2003a] M.F. Barnsley, J.E. Hutchinson and Ö. Stenflo, A fractal value random
iteration algorithm and fractal hierarchy, Submitted to SIAM review

[2003b] M.F. Barnsley, J.E. Hutchinson and Ö. Stenflo, Dimension and approx-
imation properties of V-variable fractals, In preparation

15

Figure 1: A 3-dimensional Sierpinski fractal.

16

Figure 2: A 3-dimensional Pythagoras tree (normal mode: only the n-th ap-
proximation to the attractor set is shown).

Figure 3: A 3-dimensional Pythagoras tree (sticky mode: approximations from
previous iterations are shown as well).

17

Figure 4: A 2-dimensional Pythagoras tree rendered in three-dimensional space
(sticky mode: approximations from previous iterations are shown as well).

Figure 5: A 3-dimensional Pythagoras tree with an alternating pattern, simu-
lated by using four component maps instead of the regular two (sticky mode:
approximations from previous iterations are shown as well). The initial figure
is a bar instead of a cube.

18

Figure 6: A 2-variable 3-dimensional Pythagoras tree (sticky mode: approxi-
mations from previous iterations are shown as well). The two colors correspond
to the two initial buffers. The 2-variability is subtle, but it is clear the trees are
not as regular as those in Figure 3 and 4. The two chosen IFSs are from these
two figures respectively.

19

